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Anisotropic magnetized compact stars: the γ metric model
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When modeling the structure of compact stars, the presence of magnetic fields poses a number of questions
about the micro and macrophysics treatment of the system. Here, we discuss a model based in the so-called
γ-metric to describe anisotropic magnetized compact stars.

In astrophysics, the term compact star refers to the
final stage of the life of a star. Depending on the mass
of the progenitor, it can be classified into three main
classes: white dwarf (WD), neutron star (NS), and
black hole. Degenerate stars –WDs and NSs– are made
up of nuclei immerse in a sea of degenerate matter,
whose pressure supports the star against the inward
pull of gravity. In this paper, we will use the terms
compact and degenerate stars indistinctly.

To model compact stars, there are two key ingredi-
ents to consider. One is the equation of state (EoS),
whose task is to describe the thermodynamic properties
specifying the state of the matter composing the star,
in particular, the dependence of the pressure and en-
ergy density on particle density. The other ingredient
are the structure equations, which define the variation
of the pressure, mass and luminosity throughout the
different layers of the star.

The structure of an object in hydrostatic equi-
librium, subject only to gravity, can be simply de-
scribed by Euler and Poisson equations in the New-
tonian approximation. As occurs for NSs, general rel-
ativity corrections must be introduced if the matter
density produces an appreciable space-time curvature,
i.e. GM/R ≫ 1, with M and R the mass and ra-
dius of the star and G the gravitational constant. In
this case, the assumption of a static, spherically sym-
metric distribution of matter in chemical, hydrostatic
and thermodynamic equilibrium leads to the Tolman-
Oppenheimer-Volkoff (TOV) equations [1, 2]. The so-
lution of this system of differential equations together
with the EoS provides the spatial distribution of energy
density ϵ(r), mass M(r) and pressure P (r). To obtain
it, we integrate from P (0) = Pc and M(0) = 0 until
the pressure of the gas becomes zero, P (R) = 0, which
determines the radius R of the star. The EoS input
is used microscopically at each point of integration. It
establishes the central pressures and energy densities,
and their subsequent values, thus defining a parametric
family of M vs R curves –the mass-radius relation–.

However, if there are magnetic fields present, com-
bining both ingredients is not straightforward. First
and foremost, the thermodynamics of a quantum sys-

tem under the action of a magnetic field changes: the
transverse momentum of the particles couples to the
magnetic field, which results in the splitting of the
pressure into two components, one parallel (P∥) and
the other perpendicular (P⊥) to the magnetic field [3].
Such anisotropy contradicts the assumption of a spheri-
cally symmetric distribution of matter and an isotropic
energy-momentum tensor that led to the TOV equa-
tions. Therefore, some questions arise regarding which
pressure to use in the calculations and how to intro-
duce the full thermodynamic information of the sys-
tem consistently. After different attempts to address
these issues, we constructed a general model suitable
to study the structure of axially deformed magnetized
compact stars [4, 6, 5]. We based our work in a number
of papers showing that an object with axial symmetry
can be described by the so-called γ-metric, a static, ax-
isymmetric, asymptotically flat family of solutions to
the Einstein equations in spherical coordinates. This
metric exhibits a parameter γ = z/r that associates
the polar (z) and equatorial (r) radii and is therefore
connected to the shape of the object. In the case of
small deformations, γ ≃ 1, the metric can be written
as

ds2 = − [1− 2m(r)/r]
γ
dt2 + [1− 2m(r)/r]

−γ
dr2

+ r2 sin θdϕ2 + r2dθ2 (1)

The second parameter, m, is related to both the grav-
itational mass M = γm, and to the quadrupolar mo-
ment Q = m3γ(1 − γ2)/3. Notice that when γ → 0
the metric reduces to Minkowski (M = Q = 0) and if
γ → 1 it becomes Schwarszchild (Q = 0). From Eq. 1
and with an isotropic energy-momentum tensor, the
the pressure follows the differential equation

dP

dr
= −

(E + P )
[
r
2 + 4πr3P − r

2

(
1− 2M

r

)γ]
r2

(
1− 2M

r

)γ . (2)

Since it is our interest to study the effects of the
anisotropy coming from the magnetic field on the struc-
ture equations, let us analyse the dependence of the
pressures with the coordinates. The parallel pressure,
directed along the z-axis, achieves its maximum value
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in the equatorial plane and becomes zero at the surface.
Thus we assume P∥ = P∥(z(r)). On the contrary, the
perpendicular pressure is directed transversal to the z-
axis, so we consider P⊥ = P⊥(r). That settled, we pon-
der the fact that when solving TOV equations, smaller
pressures lead to smaller radii. Intuitively, we could
think that the ratio of the pressures should be related
to the shape of the object. Hence, the main supposition
of our model is the ansatz of interpreting γ as the ratio
between the parallel and perpendicular central pres-
sures, that is, γ = z/r = P∥(z(r))/P⊥(r) ≡ P∥0/P⊥0.
At this point, we have expressions for each pressure

and their dependence with the coordinates as well as
the value of γ from the EoS and we are only missing
how to obtain the mass. Yet, the deformed compact
star may be visualized as a spheroidal object and the
mass can be computed consequently. At the end, we
have the following set of coupled structure equations

dM

dr
= 4πγr2

(E∥ + E⊥)

2
, (3)
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, (4)
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where M(r) is the total mass enclosed in the spheroid
of equatorial radius r, and at each integration step
E∥ = E(P∥), E⊥ = E(P⊥) are computed through the
parametric dependence of the energy density with each
pressure introduced by the EoS.
In general terms, Eqs. (3-5) are solved similarly to

the TOV equations. The initial conditions E0 = E(r =
0), P∥0

= P∥(r = 0) and P⊥0 = P⊥(r = 0) are taken
from the EoS, while the condition P (R) = 0 defines the
equatorial radius, so that the polar radius is Z = γR
and the total mass M = M(R).

There are two important features and strengths of
this model. First, as a result of using not one but both
pressures, we are able to include all of the microphysics
information in the EoS. The second is the fact that as
expected, the system reduces to TOV equations when
the magnetic field is equal to zero, i.e. for γ = 1 and
P∥ = P⊥.
However, there is still room for improvement. As a

result of neglecting the dependence on the angular vari-
ables and assuming that P⊥ evolves in the equatorial
direction and P∥ in the polar one, we ought to use dif-
ferent values of the energy density to integrate Eqs. (4)
and (5). In consequence, to compute the mass of the
spheroidal object the average energy density must be
considered. This warns us that a complete description
of the anisotropic object should stem from a full tridi-
mensional treatment. Another limitation lies within
the ansatz, since reducing the value of γ to the ratio of

the central pressures dismisses the possible variation of
γ throughout the different layers of the star. A more
accurate solution could be achieved in the latter case.

A few years of testing the model have shown its use-
fulness and practicality for the study of WDs, Bose-
Einstein condensate stars and Strange quark stars (see
Refs. [4, 6, 5]). Common results evidence that the de-
formation is small in all cases, becoming relevant at
the low-intermediate density regime with respect to
the magnetic field, when the magnetic force starts to
compare to the matter pressure. Also, the maximum
masses are not significantly affected if at all, confirming
that the main effect is the change in shape of the star
to an oblate (prolate) spheroid depending on whether
γ < 1 and P∥ < P⊥ (γ > 1, P∥ > P⊥), see Figure 1.
To what extent this is fixed by the assumptions of the
model should be further studied.

Figure 1: Scheme of deformation in γ metric model.
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